- **(4)** R. P. Hatch and S. M. Weinreb, *J. Org. Chem.*, **42,** 3960 (1977); A. Basha,
M. Lipton and S. M. Weinreb, *Tetrahedron Lett.*, 4171 (1977).
Failure to observe reaction in this case may be attributable either to com-
- **(5) peting enolate formation or to a facile back reaction converting hydroxy-selenol ester to lactone. This question will be resolved in future studies.**
-
- (6) For a review of selenol acids and esters, see K. A. Jensen in "Organic Selenium Compounds: Their Chemistry and Biology", D. L. Klayman and W.
H. Günther, Ed., Wiley, New York, N.Y., 1973, pp 263–272.
(7) S. Masamune, **cation that selenol esters appear to offer no advantage over thiol esters as acyl-transfer agents.**
- **(8) Preliminary experiments indicate the Cu(ll) salts are equally effective in promoting the methanolysis of the selenol esters.**

Alan P. Kozikowski,* Anthony Ames

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260 Received January 20,1978

Synthesis and Characterization of 7-Spirocyclopropyl-2,3-dioxabicyclo[2.2.llhept-5-ene1

Summary: The title compound, **3,** was prepared by diimide reduction of the unstable endoperoxide **2** which was obtained by photooxygenation of **spiro[2.4]hepta-4,6-diene (1)** and characterized by catalytic reduction to its diol **4** and basecatalyzed rearrangement to its ketol *5.*

Sir: Although the singlet oxygenation of spiro[2.4]hepta-4,6-diene (1) has been reported,² the intermediacy of the expected endoperoxide **2** could only be inferred from the formation of the diepoxide **6** and ketoepoxide **7** as the major rearrangement products (cf. Scheme I). Recently we have been successful in trapping the unstable singlet oxygen adducts derived from cyclopentadiene,³ 6,6-dimethylfulvene, α -pyrone,⁵ furan,⁶ and 2,5-dimethylthiophene⁷ by diimide reduction to their respective bicyclic peroxides **9-13.** In view of this convenient peroxide bond-preserving technique, we have reinvestigated the singlet oxygenation of the spirodiene 1 and established the intervention of its unstable endoperoxide **2** by direct NMR monitoring and reductive trapping in the form of the stable bicyclic peroxide **3.**

The photooxygenation of 1 in CFCl₃ at -78 °C with tetraphenylporphyrin (TPP) as sensitizer using a General Electric 400-W sodium lamp gave after warm-up to room temperature the reported2 rearrangement products **6** and **7.** However, when the singlet oxygenation was monitored by subambient $(-50$ "C) NMR analysis, after 5 h of irradiation the characteristic spirodiene **1** resonances at *b* 1.50 (singlet, cyclopropyl, 4 H) and δ 5.85 and 6.30 (multiplets, olefinic, 4 H) had been completely replaced by new resonances at δ 0.90 (broad singlet, cyclopropyl, $4 H$), 4.58 (triplet, $J = 2.0$ Hz, bridgehead, $2 H$), and 6.53 (triplet, $J = 2.0$ Hz, olefinic, 2 H), ascribed to the unsaturated endoperoxide **2** as the expected singlet oxygenation adduct of **1.** Not even traces of the diepoxide **6** and ketoepoxide **7** rearrangement products of **2** could be detected by NMR at -50 °C in CFCl₃. Warming of the reaction mixture to *0* "C promoted rapid replacement of the above signals assigned to **2** by those reported2 for **6** and **7.** Furthermore, photooxygenation of the spirodiene 1 in MeOH with Rose Bengal as sensitizer in the presence of thiourea afforded the unsaturated diol 8 in 60% yield, liquid, n^{20} _D 1.4930 (after VPC collection on a 5 ft \times $\frac{1}{4}$ in. aluminum column packed with 5% SE 30 on Chromosorb P and operated at a column temperature of 125 °C). Its characterization rests on satisfactory elemental analysis, ¹H NMR (CDCl₃, Me₄Si) resonances at δ 0.85 (s, cyclopropyl, 4 H), 2.60 (broad s, OH, exchanged with D_2O , **2** H), 3.98 (5, OCH, 2 H), and 6.05 (s, olefinic, 2 H), and IR (CHC13) bands at 3710-3125 (OH), 3070-3020 (cyclopropyl CH and olefinic CH), 2990-2900 (aliphatic CH), and 1710 cm^{-1} (C=C).

Treatment of the photooxygenate with excess diimide, generated in situ from potassium azodicarboxylate as described previously,³ at -78 °C in CFCl₃ afforded the stable saturated endoperoxide **3** in 68% yield, pale yellow needles, mp 32 "C [after sublimation at 30 "C (0.15 mmHg)]. The bicyclic peroxide **3** gave a satisfactory elemental analysis and exhibited ¹H NMR (CCl₄) resonances at δ 0.85 (m, cyclopropyl, 4 H), 1.87 (broad s, methylenic, 4 H), and 3.80 (broad s bridgehead, 2 H) and IR (CCl₄) bands at 3080 (cyclopropyl CH), 2980-2940 (aliphatic CH), 1460 (CH₂ bending), and 1018 cm^{-1} (peroxide). The following chemical transformations confirm this structure assignment. Thus, catalytic hydrogenation of 3 over 10% Pd/C as well as thiourea reduction in MeOH gave the cis-diol 4 in 92% yield, n^{20} _D 1.4935 (after VPC collection under the conditions described for diol **8).** Diol **4** gave a satisfactory elemental analysis and exhibited 'H NMR (CDC13) resonances at *6* 0.30-1.00 (m, cyclopropyl, 4 H), 1.95 (broad s, CH_2 , 4 H), 2.39 (broad s, -OH, exchanged with D_2O , 2 H), and 3.48 (m, OCH, 2 H) and IR $(CHCl₃)$ bands at 371&3200 (OH), 3065 (cyclopropyl CH), 2995-2860 (aliphatic CH), 1420 (CH₂ bending), and 1040 cm⁻¹ (CO). Diol 4 could also be obtained by diimide reduction of the unsaturated diol **8** in MeOH at 0 "C, showing identical spectral data. Finally, treatment of the saturated endoperoxide **3** with triethylamine in CH₂Cl₂ at 0 °C gave the ketol 5 in 87% yield, n^{20} _D 1.4856 (after VPC collection under the conditions described for diol

0022-326317811943-2737\$01,00/0 *0* 1978 American Chemical Society

4). Keto1 *5* exhibited a satisfactory elemental analysis and showed ¹H NMR (CDCl₃) resonances at δ 1.18 (broad s, cyclopropyl, $4 H$), 1.72 (broad s, OH, exchanged with D_2O , 1 H), 1.90-2.70 (m, CH2, 4 H), and 4.11 (m, OCH, 1 H) and IR (CHC13) bands at 3700-3240 (OH), 3060 (cyclopropyl CHI, 2995-2940 (aliphatic CH), 1720 (C=O), 1446 and 1412 (CH₂ bending), and 1070 and 1050 (CO).

On the basis of the spectral data and chemical transformations (cf. Scheme I) the intervention of the strained unsaturated endoperoxide **2** in the photooxygenation of spirodiene 1 is confirmed. **Its** reductive trapping with diimide offers a convenient synthetic entry to the saturated bicyclic peroxide **3,** difficult to come by via alternatives routes. We are extending this synthetic methodology to prepare otherwise inaccessible bicyclic peroxides in order to explore their thermal and photochemical behavior.

Acknowledgments are made to the Donors of the Petroleum Research Fund (Grant No. 8341-AC-1,4), administered by the American Chemical Society, the National Science Foundation (Grant CHE -77-13308), and the National Institutes of Health (Grants GM-22119-02, GM-00141-02, and RR-8102-03) for support of this work. We appreciate the technical assistance by Miss M. L. Santiago, undergraduate research participant in the Support for University Biomedical Education (SUBE) sponsored by NIH-MBS. We thank Dr. A. Adler (Western Connecticut State College) for a generous gift of TPP.

References and Notes

-
- (1) Paper 67 in the Cyclic Peroxide Series.
(2) H. Takeshita, H. Kanamori, and T. Hatsui, *Tetrahedron Lett.*, 3139 (1973).
(3) W. Adam and H. J. Eggelte, *J. Org. Chem.*, 42, 3987 (1977).
(4) W. Adam and I. Erden, *Angew.*
-
-
-
-
- **(8)** NIH **Career Development Awardee (1975-1980).**

Waldemar Adam,'s Ihsan Erden

Department of Chemistry, University of Puerto Rico Rio Piedras, Puerto Rico 00931 Received March 14, 1978