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Synthesis and Characterization of 
7-Spirocyclopropyl-2,3-dioxabicyclo[ 2.2.llhept-5-ene1 

Summary: The title compound, 3, was prepared by diimide 
reduction of the unstable endoperoxide 2 which was obtained 
by photooxygenation of spiro[2.4]hepta-4,6-diene (1) and 
characterized by catalytic reduction to its diol 4 and base- 
catalyzed rearrangement to its ketol 5. 

Sir: Although the singlet oxygenation of spiro[2.4]hepta- 
4,6-diene (1) has been reported,2 the intermediacy of the ex- 
pected endoperoxide 2 could only be inferred from the for- 
mation of the diepoxide 6 and ketoepoxide 7 as the major re- 
arrangement products (cf. Scheme I). Recently we have been 
successful in trapping the unstable singlet oxygen adducts 
derived from cyclopentadiene,3 6,6-dimethylfulvene, a-py- 
rone,5 furan,6 and 2,5-dimethylthi~phene~ by diimide re- 
duction to their respective bicyclic peroxides 9-13. In view of 
this convenient peroxide bond-preserving technique, we have 
reinvestigated the singlet oxygenation of the spirodiene 1 and 
established the intervention of its unstable endoperoxide 2 
by direct NMR monitoring and reductive trapping in the form 
of the stable bicyclic peroxide 3. 
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The photooxygenation of 1 in CFC13 a t  -78 "C with tetra- 
phenylporphyrin (TPP) as sensitizer using a General Electric 
400-W sodium lamp gave after warm-up to room temperature 
the reported2 rearrangement products 6 and 7. However, when 
the singlet oxygenation was monitored by subambient (-50 
"C) NMR analysis, after 5 h of irradiation the characteristic 
spirodiene 1 resonances at b 1.50 (singlet, cyclopropyl, 4 H) 
and 6 5.85 and 6.30 (multiplets, olefinic, 4 H) had been com- 
pletely replaced by new resonances at  6 0.90 (broad singlet, 
cyclopropyl, 4 H), 4.58 (triplet, J = 2.0 Hz, bridgehead, 2 HI, 
and 6.53 (triplet, J = 2.0 Hz, olefinic, 2 H),  ascribed to the 
unsaturated endoperoxide 2 as the expected singlet oxygen- 
ation adduct of 1. Not even traces of the diepoxide 6 and ke- 
toepoxide 7 rearrangement products of 2 could be detected 
by NMR at -50 "C in CFCl3. Warming of the reaction mixture 
to 0 "C promoted rapid replacement of the above signals as- 
signed to 2 by those reported2 for 6 and 7. Furthermore, 
photooxygenation of the spirodiene 1 in MeOH with Rose 
Bengal as sensitizer in the presence of thiourea afforded the 
unsaturated diol 8 in 60% yield, liquid, n2OD 1.4930 (after VPC 
collection on a 5 f t  X 1/4 in. aluminum column packed with 5% 
SE 30 on Chromosorb P and operated at  a column tempera- 
ture of 125 "C). Its characterization rests on satisfactory ele- 
mental analysis, 1H NMR (CDC13, Me4Si) resonances at b 0.85 
(s, cyclopropyl, 4 H), 2.60 (broad s, OH, exchanged with DzO, 
2 H), 3.98 (5, OCH, 2 H), and 6.05 (s, olefinic, 2 H), and IR 
(CHC13) bands a t  3710-3125 (OH), 3070-3020 (cyclopropyl 
CH and olefinic CH), 2990-2900 (aliphatic CH), and 1710 
cm-l (C=C). 

Treatment of the photooxygenate with excess diimide, 
generated in situ from potassium azodicarboxylate as de- 
scribed p rev i~us ly ,~  at  -78 "C in CFCl3 afforded the stable 
saturated endoperoxide 3 in 68% yield, pale yellow needles, 
mp 32 "C [after sublimation at 30 "C (0.15 mmHg)]. The bi- 
cyclic peroxide 3 gave a satisfactory elemental analysis and 
exhibited 1H NMR (CC14) resonances at  6 0.85 (m, cyclopro- 
pyl, 4 H), 1.87 (broad s, methylenic, 4 H),  and 3.80 (broad s 
bridgehead, 2 H)  and IR (CC14) bands at  3080 (cyclopropyl 
CH), 2980-2940 (aliphatic CHI, 1460 (CH2 bending), and 1018 
cm-1 (peroxide). The following chemical transformations 
confirm this structure assignment. Thus, catalytic hydroge- 
nation of 3 over 10% PdIC as well as thiourea reduction in 
MeOH gave the cis-diol 4 in 92% yield, n 2 0 D  1.4935 (after VPC 
collection under the conditions described for diol 8). Diol 4 
gave a satisfactory elemental analysis and exhibited 'H NMR 
(CDC13) resonances at  6 0.30-1.00 (m, cyclopropyl, 4 H), 1.95 
(broad s, CH2,4 H),  2.39 (broads, -OH, exchanged with DzO, 
2 H),  and 3.48 (m, OCH, 2 H) and IR (CHC13) bands at  
371&3200 (OH), 3065 (cyclopropyl CH), 2995-2860 (aliphatic 
CH), 1420 (CH2 bending), and 1040 cm-l (CO). Diol 4 could 
also be obtained by diimide reduction of the unsaturated diol 
8 in MeOH a t  0 "C, showing identical spectral data. Finally, 
treatment of the saturated endoperoxide 3 with triethylamine 
in CHzC12 a t  0 "C gave the ketol 5 in 87% yield, n20D 1.4856 
(after VPC collection under the conditions described for diol 
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4). Keto1 5 exhibited a satisfactory elemental analysis and 
showed lH NMR (CDCls) resonances at  6 1.18 (broad s, cy- 
clopropyl, 4 H), 1.72 (broads, OH, exchanged with D20, 1 H), 
1.90-2.70 (m, CH2, 4 H), and 4.11 (m, OCH, 1 H) and IR 
(CHC13) bands at  3700-3240 (OH), 3060 (cyclopropyl CHI, 
2995-2940 (aliphatic CH), 1720 (C=O), 1446 and 1412 (CHZ 
bending), and 1070 and 1050 (CO). 

On the basis of the spectral data and chemical transfor- 
mations (cf. Scheme I) the intervention of the strained un- 
saturated endoperoxide 2 in the photooxygenation of spiro- 
diene 1 is confirmed. Its reductive trapping with diimide offers 
a convenient synthetic entry to the saturated bicyclic peroxide 
3, difficult to come by via alternatives routes. We are ex- 
tending this synthetic methodology to prepare otherwise in- 
accessible bicyclic peroxides in order to explore their thermal 
and photochemical behavior. 
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